286 research outputs found

    Generalized selfish bin packing

    Full text link
    Standard bin packing is the problem of partitioning a set of items with positive sizes no larger than 1 into a minimum number of subsets (called bins) each having a total size of at most 1. In bin packing games, an item has a positive weight, and given a valid packing or partition of the items, each item has a cost or a payoff associated with it. We study a class of bin packing games where the payoff of an item is the ratio between its weight and the total weight of items packed with it, that is, the cost sharing is based linearly on the weights of items. We study several types of pure Nash equilibria: standard Nash equilibria, strong equilibria, strictly Pareto optimal equilibria, and weakly Pareto optimal equilibria. We show that any game of this class admits all these types of equilibria. We study the (asymptotic) prices of anarchy and stability (PoA and PoS) of the problem with respect to these four types of equilibria, for the two cases of general weights and of unit weights. We show that while the case of general weights is strongly related to the well-known First Fit algorithm, and all the four PoA values are equal to 1.7, this is not true for unit weights. In particular, we show that all of them are strictly below 1.7, the strong PoA is equal to approximately 1.691 (another well-known number in bin packing) while the strictly Pareto optimal PoA is much lower. We show that all the PoS values are equal to 1, except for those of strong equilibria, which is equal to 1.7 for general weights, and to approximately 1.611824 for unit weights. This last value is not known to be the (asymptotic) approximation ratio of any well-known algorithm for bin packing. Finally, we study convergence to equilibria

    AFPTAS results for common variants of bin packing: A new method to handle the small items

    Full text link
    We consider two well-known natural variants of bin packing, and show that these packing problems admit asymptotic fully polynomial time approximation schemes (AFPTAS). In bin packing problems, a set of one-dimensional items of size at most 1 is to be assigned (packed) to subsets of sum at most 1 (bins). It has been known for a while that the most basic problem admits an AFPTAS. In this paper, we develop methods that allow to extend this result to other variants of bin packing. Specifically, the problems which we study in this paper, for which we design asymptotic fully polynomial time approximation schemes, are the following. The first problem is "Bin packing with cardinality constraints", where a parameter k is given, such that a bin may contain up to k items. The goal is to minimize the number of bins used. The second problem is "Bin packing with rejection", where every item has a rejection penalty associated with it. An item needs to be either packed to a bin or rejected, and the goal is to minimize the number of used bins plus the total rejection penalty of unpacked items. This resolves the complexity of two important variants of the bin packing problem. Our approximation schemes use a novel method for packing the small items. This new method is the core of the improved running times of our schemes over the running times of the previous results, which are only asymptotic polynomial time approximation schemes (APTAS)

    Improved approximation guarantees for weighted matching in the semi-streaming model

    Get PDF
    We study the maximum weight matching problem in the semi-streaming model, and improve on the currently best one-pass algorithm due to Zelke (Proc. of STACS2008, pages 669-680) by devising a deterministic approach whose performance guarantee is 4.91+epsilon. In addition, we study preemptive online algorithms, a sub-class of one-pass algorithms where we are only allowed to maintain a feasible matching in memory at any point in time. All known results prior to Zelke's belong to this sub-class. We provide a lower bound of 4.967 on the competitive ratio of any such deterministic algorithm, and hence show that future improvements will have to store in memory a set of edges which is not necessarily a feasible matching
    • …
    corecore